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Abstract: 

The cost estimation for any algorithm defines the running time for that algorithm means to say 

how much time it taken to produce the solution. It defines the performance of algorithm. 

The dynamic programming approach is a problem solving technique that solves problems by 

dividing them into sub problems. Dynamic programming is used when the sub problems are not 

independent e.g. when the share the same sub problems. 

Multistage decision policy with recursive approach will provides a well-organized way while 

using Dynamic programming. In multistage decision process the problem is divided into several 

parts called as sub problems and then each sub problem will be solved individually and the final 

result will be obtained by combining the results of all the sub problems. 

With the help of asymptotic notations, calculate the running time complexity of dynamic 

programming method for solution of graphical as well as network problems for the minimum 

path between nodes. 
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First we know that what is an algorithm? Algorithm is not a set of instructions that followed, 

accomplish a work .These are not just simple some steps to solve a problem. If we take an 

example:  

Step 1: Start 

Step 2: Read the numbers  

Step 3: Stop 

From above example we see that we take three numbers and there is no use for these numbers 

and also no result is produced by these. Hence above steps are aimless. Really “An algorithm is 

any well defined computational practice that takes some input, or set of inputs or may be 

no input, as input and process then produce some value or values as an output.” It must 

follow the give below criteria for becoming an algorithm otherwise these are simple steps. The 

criteria are: 

Input: Zero or more quantities must be externally supplied as an input of algorithm for compute 

the result of that particular problem. 

Output: One quantity must be produce as an output.  

Finiteness: There should be finite steps in the algorithm. Mean to say the total number of steps 

may be fixed. 

Definiteness: In the algorithm the statements / Instructions must be clear and unambiguous. The 

unambiguous means steps should clear cut not having confusion for complier that what is done at 

particular moment?  No unambiguousness in steps. 

Effectiveness: Each and every statement must be very basic and specifically contribute 

something in the solution defined by an algorithm. 

Example: Algorithm to find the greatest among three numbers 

Step 1: Start 

Step 2: Read the three number A1, A2, A3 
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Step 3: Compare A1, A2. If A1 is greater perform step 4 else perform step 5. 

Step 4: Compare A1, A3. If A1 is greater, output “A1 is greater” else output “A3 is greater” 

perform step 6. 

Step 5: Compare A2, A3. If A2 is greater, output”A2 is greater” else output “C is greater”. 

Step 6: Stop 

For any problem we develop the algorithms because there may be different way to solve the 

problem. A crucial question is “Which one algorithm is better?”  The answer for that question is 

analysis the algorithm. Analysis of algorithm is the quantitative measurement of algorithm 

performance in terms of times and space requirements. The performance evaluation of an 

algorithm is gained by totaling the number of occurrences of each operation when the running 

the algorithm. The performance of algorithm is evaluated as a function of the input size (n) and is 

to be considered modulo a multiplicative constant. 

 

 

 

 

 

 

 

 

                               Figure-a 

Actually time and space complexity reflect the algorithm`s performance.  

Time complexity is defined as running time of the program as a function of size of input.  
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The space complexity is defined as the amount of computer memory required during the program 

execution, as a function of input size.  The Complexity has three states. These states or cases are: 

Worst case complexity, Average case complexity, Best case complexity. These are defining as 

below: 

Worst Case Complexity: The worst case complexity of the algorithm is the function defined by 

the upper limit of steps taken on any instance of size z. 

Average Case Complexity: The worst case complexity of the algorithm is the function defined 

by the average limit of steps taken on any instance of size z. 

Best Case Complexity: The worst case complexity of the algorithm is the function defined by 

the lower limit of steps taken on any instance of size z. 

The above graph shows all type of complexity. To represent it in mathematical form we use the 

concept of asymptotic notations. 

Asymptotic Notations notates the asymptotic efficiency. “The asymptotic efficiency of an 

algorithm is the order of growth of any algorithm as the input size approaches the limit 

increases without bound. When the situation arises that the input size is larger enough only 

the order of growth of the running time is relevant then asymptotic notations are capable 

to define its complexity.” 

 There are some notations:  

Big – oh – Notations (O),  

Omega – Notations (Ω),   

Theta – Notations (Θ),  

Little- oh- Notations (o),   

Little –omega – Notations (ω). 
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Big – oh – Notations (O): When we have only an asymptotic upper bound, we use O-notation. 

For a given function g (n), we denoted by O (g (n)) the set of functions 

O(g(n))={ f(n): there exists positive constant c and n0  

such that  0≤f(n)≤c.g(n) for all n≥n0} 

 

Graphical Illustration:  

 

 

 

 

 

 

 

 

Omega – Notations (Ω): Just as O-notation provides an asymptotic upper bound on a function, 

Ω -notation provides a asymptotic lower bound. For a given function g (n), we denoted by Ω (g 

(n)) the set of functions 

Ω (g (n)) = {f (n): there exists positive constant c and n0  

such that 0≤ c.g (n) ≤ f (n) for all n≥n0} 
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Graphical Illustration:  

 

 

 

 

 

 

 

 

Theta – Notations (Θ): For a given function g (n), we denoted by Θ (g (n)) the set of functions 

 

Θ (g (n)) = {f (n): there exists positive constant c1, c2 and n0 such that  

 0≤ c1.g (n) ≤ f (n) ≤ c2.g (n) for all n≥n0} 

Graphical Illustration:  
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Little- oh- Notations (o): When we have only an asymptotic upper bound, we use O-notation. 

For a given function g (n), we denoted by O (g (n)) the set of functions 

O(g(n))={ f(n): there exists positive constant c >0 and n0  

such that  0≤f(n)<c.g(n) for all n≥n0} 

Below condition is satisfied for little oh notation 

Limit      f(n) / g(n)= constant 

n->∞ 

 

Little –omega – Notations (ω): Just as O-notation provides an asymptotic upper bound on a 

function, Ω -notation provides a asymptotic lower bound. For a given function g (n), we denoted 

by Ω (g (n)) the set of functions 

Ω (g (n)) = {f (n): there exists positive constant c >0 and n0 such that 0≤ c.g (n) < f (n) for all 

n≥n0} 

Below condition is satisfied for little omega notation 

Limit      f (n) / g (n) = ∞ 

n->∞  

Now we see the problem for which we want to find the complexity. Let us take an example of a 

network for which the minimum path between the first to last node would be calculated. But we 

should also aware with dynamic programming. 

Dynamic programming is a useful technique for making a sequence of interrelated decisions. It 

provides a step wise procedure for finding the optimal combination of decisions. Dynamic 

programming provides a useful way to find out the minimum distance between the two nodes 

within the network. 
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The multistage decision policy with recursive approach will provides an efficient way while 

using Dynamic programming. In multistage decision process the problem is divided into several 

parts called as sub problems and then each sub problem will be solved individually and the final 

result will be obtained by combining the results of all the sub problems. 

PROBLEM: 

 

 

  

 

 

 

 

 

 

                    Figure-1 (The network with associated path costs) 

The problem in figure-1 shows the road map and the distance between the cities of a 

transportation problem. If the salesman has to travel from city A to city J, then what should be 

the best way and the minimum path to reduce the total transportation cost? 

While using the Dynamic Programming approach first we have to divide the given network into 

the multistage problem. Now the problem can be divided into four parts to run from state A to 

state J.  
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Figure-2 (Multistage Sub division of the Transportation Problem) 

The cost associated with each state will be as follows: 

 

 

 

 

 

            

 

 

Let the decision variable xn(n=1, 2,3,4) be the immediate destination on stage n. Thus the root 

selected is A        x1         x2        x3         x4, were x4 = J. 
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Let fn(s, xn) be the total cost of the overall transportation for the remaining stages, given that the 

person is in state s , ready to start stage n, and  selects xn as the immediate destination. Let xn
*
  

denote any value of xn that minimizes fn(s, xn) and let f
*
n(s) be the corresponding minimum value 

of fn(s, xn). 

So                f
*
n(s) = min fn(s, xn) = fn(s, x

*
n ). 

Where          fn(s, xn) = Immediate cost(stage n) + Minimum future cost(stage n+1). 

Now for n=4    i.e. Fourth stage 

N=4              

 

 

 

Now for n=3   i.e. Third stage 

    f3(s, x3)= Csx3 + f
*
4(x3) 
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Now for n=1  i.e.   

 F1(s, x1)= Csx1 + f
*
2(x1) 

                                 

 

 

Thus the total minimum cost from A to J is f
*
1(A) = 15. 

The possible roots are A        C        E        H        J, 

                                    A        D        E        H        J,       

                                    A        D        F         I        J. 

This method will provide a better way to find out all the minimum paths with in a network or any 

transportation problem. All the routes to reach the destination can be expressed in very précised 

manner.  

To implement this we define the algorithm: 

Step 1: First store the graph into computer with the help of cost matrix in stage wise. 

Step 2: From n
th

 stage to initial one we find the feasible solution. 

Step 3: At last print the possible route with the help of last getting feasible solution that represent 

also the total minimum cost from starting node to destination node. 

Step 4: Stop 

Algorithm Analysis: 

For first step if we store the data then if layer before stage1 having n1 nodes and after it before 

stage2 having node m1 then the complexity in worst case is  

O (n1* m1) ≈ O (n1* n1) when m1= n1 or   n1> m1 , so O (n1* n1) ≈ O (p
2
) so it becomes O (p

2
). 

Similarly for next stages we get O (q
2
), O (r

2
), O (s

2
), O (t

2
) …………. O (z

2
). 

So total cost for first step O (n
2
). 

s B C D f
*
1(s) x

*
1 

A 17 15 15 15 C or D 
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For the second step the cost evaluated when we find the feasible solution: once we add and 

second when we compare. There are many recursive steps that help to find the solution and 

generates the complexity but the whole cost can be represented by a quadratic equation then total 

cost for second step suppose O (m
2
).  

Similarly for the third steps the cost is also represented by a quadratic equation O (l
2
). 

Hence the overall cost for above algorithm may be represented as the sum all the inter- mediated 

cost. So the overall running time is given by 

Total Estimated Cost = O (n
2
) + O (m

2
) + O (l

2
) 

                                   = O (n
2
) where the n is represented to input vertices of graph.  

So the Total Estimated Cost of the problem in worst case is O (n
2
). 
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