
 IJMIE Volume 2, Issue 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

232

March
2012

Cost Estimation of Dynamic Programming

Algorithm For Solution of Graphical as well

as Network Problems for minimum path

Anand Kumar Dixit*

Manish Jain**

Adarsh Srivastava***

Ashish Misra****

__

Abstract:

The cost estimation for any algorithm defines the running time for that algorithm means to say

how much time it taken to produce the solution. It defines the performance of algorithm.

The dynamic programming approach is a problem solving technique that solves problems by

dividing them into sub problems. Dynamic programming is used when the sub problems are not

independent e.g. when the share the same sub problems.

Multistage decision policy with recursive approach will provides a well-organized way while

using Dynamic programming. In multistage decision process the problem is divided into several

parts called as sub problems and then each sub problem will be solved individually and the final

result will be obtained by combining the results of all the sub problems.

With the help of asymptotic notations, calculate the running time complexity of dynamic

programming method for solution of graphical as well as network problems for the minimum

path between nodes.

Keywords: Algorithm, Asymptotic Notation, Cost Estimation, Complexities for algorithms,

Dynamic programming, Optimal Structure, Overlapping Problems, Multistage decision policy.

* Asst. Professor (MCA), Jagran Institute of Management, 620, W Block Saket Nagar, Kanpur, U.P.-208014

** Asst. Professor (MCA), Jagran Institute of Management, 620, W Block Saket Nagar, Kanpur, U.P.-208014

*** Asst. Professor (MCA), Jagran Institute of Management, 620, W Block Saket Nagar, Kanpur, U.P.-208014

**** Asst. Professor (MCA), Jagran Institute of Management, 620, W Block Saket Nagar, Kanpur, U.P.-208014

 IJMIE Volume 2, Issue 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

233

March
2012

First we know that what is an algorithm? Algorithm is not a set of instructions that followed,

accomplish a work .These are not just simple some steps to solve a problem. If we take an

example:

Step 1: Start

Step 2: Read the numbers

Step 3: Stop

From above example we see that we take three numbers and there is no use for these numbers

and also no result is produced by these. Hence above steps are aimless. Really “An algorithm is

any well defined computational practice that takes some input, or set of inputs or may be

no input, as input and process then produce some value or values as an output.” It must

follow the give below criteria for becoming an algorithm otherwise these are simple steps. The

criteria are:

Input: Zero or more quantities must be externally supplied as an input of algorithm for compute

the result of that particular problem.

Output: One quantity must be produce as an output.

Finiteness: There should be finite steps in the algorithm. Mean to say the total number of steps

may be fixed.

Definiteness: In the algorithm the statements / Instructions must be clear and unambiguous. The

unambiguous means steps should clear cut not having confusion for complier that what is done at

particular moment? No unambiguousness in steps.

Effectiveness: Each and every statement must be very basic and specifically contribute

something in the solution defined by an algorithm.

Example: Algorithm to find the greatest among three numbers

Step 1: Start

Step 2: Read the three number A1, A2, A3

 IJMIE Volume 2, Issue 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

234

March
2012

Step 3: Compare A1, A2. If A1 is greater perform step 4 else perform step 5.

Step 4: Compare A1, A3. If A1 is greater, output “A1 is greater” else output “A3 is greater”

perform step 6.

Step 5: Compare A2, A3. If A2 is greater, output”A2 is greater” else output “C is greater”.

Step 6: Stop

For any problem we develop the algorithms because there may be different way to solve the

problem. A crucial question is “Which one algorithm is better?” The answer for that question is

analysis the algorithm. Analysis of algorithm is the quantitative measurement of algorithm

performance in terms of times and space requirements. The performance evaluation of an

algorithm is gained by totaling the number of occurrences of each operation when the running

the algorithm. The performance of algorithm is evaluated as a function of the input size (n) and is

to be considered modulo a multiplicative constant.

 Figure-a

Actually time and space complexity reflect the algorithm`s performance.

Time complexity is defined as running time of the program as a function of size of input.

Number

of Steps

or

Iteration

of Steps

Inputs (z)

Worst Case

Average Case

Best Case

 IJMIE Volume 2, Issue 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

235

March
2012

The space complexity is defined as the amount of computer memory required during the program

execution, as a function of input size. The Complexity has three states. These states or cases are:

Worst case complexity, Average case complexity, Best case complexity. These are defining as

below:

Worst Case Complexity: The worst case complexity of the algorithm is the function defined by

the upper limit of steps taken on any instance of size z.

Average Case Complexity: The worst case complexity of the algorithm is the function defined

by the average limit of steps taken on any instance of size z.

Best Case Complexity: The worst case complexity of the algorithm is the function defined by

the lower limit of steps taken on any instance of size z.

The above graph shows all type of complexity. To represent it in mathematical form we use the

concept of asymptotic notations.

Asymptotic Notations notates the asymptotic efficiency. “The asymptotic efficiency of an

algorithm is the order of growth of any algorithm as the input size approaches the limit

increases without bound. When the situation arises that the input size is larger enough only

the order of growth of the running time is relevant then asymptotic notations are capable

to define its complexity.”

 There are some notations:

Big – oh – Notations (O),

Omega – Notations (Ω),

Theta – Notations (Θ),

Little- oh- Notations (o),

Little –omega – Notations (ω).

 IJMIE Volume 2, Issue 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

236

March
2012

Big – oh – Notations (O): When we have only an asymptotic upper bound, we use O-notation.

For a given function g (n), we denoted by O (g (n)) the set of functions

O(g(n))={ f(n): there exists positive constant c and n0

such that 0≤f(n)≤c.g(n) for all n≥n0}

Graphical Illustration:

Omega – Notations (Ω): Just as O-notation provides an asymptotic upper bound on a function,

Ω -notation provides a asymptotic lower bound. For a given function g (n), we denoted by Ω (g

(n)) the set of functions

Ω (g (n)) = {f (n): there exists positive constant c and n0

such that 0≤ c.g (n) ≤ f (n) for all n≥n0}

n0

f(n)

c (g(n))

fn)=O(g(n))

 IJMIE Volume 2, Issue 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

237

March
2012

Graphical Illustration:

Theta – Notations (Θ): For a given function g (n), we denoted by Θ (g (n)) the set of functions

Θ (g (n)) = {f (n): there exists positive constant c1, c2 and n0 such that

 0≤ c1.g (n) ≤ f (n) ≤ c2.g (n) for all n≥n0}

Graphical Illustration:

n0

f(n)

c (g(n))

fn)= Ω (g(n))

n0

f (n)

c2 (g (n))

f(n)= Θ (g(n))

c1 g (n)

 IJMIE Volume 2, Issue 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

238

March
2012

Little- oh- Notations (o): When we have only an asymptotic upper bound, we use O-notation.

For a given function g (n), we denoted by O (g (n)) the set of functions

O(g(n))={ f(n): there exists positive constant c >0 and n0

such that 0≤f(n)<c.g(n) for all n≥n0}

Below condition is satisfied for little oh notation

Limit f(n) / g(n)= constant

n->∞

Little –omega – Notations (ω): Just as O-notation provides an asymptotic upper bound on a

function, Ω -notation provides a asymptotic lower bound. For a given function g (n), we denoted

by Ω (g (n)) the set of functions

Ω (g (n)) = {f (n): there exists positive constant c >0 and n0 such that 0≤ c.g (n) < f (n) for all

n≥n0}

Below condition is satisfied for little omega notation

Limit f (n) / g (n) = ∞

n->∞

Now we see the problem for which we want to find the complexity. Let us take an example of a

network for which the minimum path between the first to last node would be calculated. But we

should also aware with dynamic programming.

Dynamic programming is a useful technique for making a sequence of interrelated decisions. It

provides a step wise procedure for finding the optimal combination of decisions. Dynamic

programming provides a useful way to find out the minimum distance between the two nodes

within the network.

 IJMIE Volume 2, Issue 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

239

March
2012

The multistage decision policy with recursive approach will provides an efficient way while

using Dynamic programming. In multistage decision process the problem is divided into several

parts called as sub problems and then each sub problem will be solved individually and the final

result will be obtained by combining the results of all the sub problems.

PROBLEM:

 Figure-1 (The network with associated path costs)

The problem in figure-1 shows the road map and the distance between the cities of a

transportation problem. If the salesman has to travel from city A to city J, then what should be

the best way and the minimum path to reduce the total transportation cost?

While using the Dynamic Programming approach first we have to divide the given network into

the multistage problem. Now the problem can be divided into four parts to run from state A to

state J.

 8

 7 5 5 2

 3 4 7 4

 5 3 4

 4 5 5

 5 2 4

 6 4

C

D

F

G

H

I

J

E B

A

 IJMIE Volume 2, Issue 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

240

March
2012

Figure-2 (Multistage Sub division of the Transportation Problem)

The cost associated with each state will be as follows:

Let the decision variable xn(n=1, 2,3,4) be the immediate destination on stage n. Thus the root

selected is A x1 x2 x3 x4, were x4 = J.

 B C D

 A 3 5 4

 E F G

B 8 5 7

C 4 3 5

D 5 2 6

 H I

E 2 5

F 7 4

G 4 4

 J

H 4

I 5

 8

 5 2

 7 5

 3 4 7 4

 5 3 4

 4 5 5

 5 2 4

 6 4

H

E B

A

D G

I

J C F

Stage 1 Stage 2 Stage 3 Stage 4

 IJMIE Volume 2, Issue 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

241

March
2012

Let fn(s, xn) be the total cost of the overall transportation for the remaining stages, given that the

person is in state s , ready to start stage n, and selects xn as the immediate destination. Let xn
*

denote any value of xn that minimizes fn(s, xn) and let f
*
n(s) be the corresponding minimum value

of fn(s, xn).

So f
*
n(s) = min fn(s, xn) = fn(s, x

*
n).

Where fn(s, xn) = Immediate cost(stage n) + Minimum future cost(stage n+1).

Now for n=4 i.e. Fourth stage

N=4

Now for n=3 i.e. Third stage

 f3(s, x3)= Csx3 + f
*
4(x3)

Now for n =2 i.e. for Second stage.

 f2(s, x2)= Csx2 + f
*
3(x2)

s f
*
4(s) x

*
4

H 4 J

I 5 J

S H I f
*
3(s) x

*
3

E 6 10 6 H

F 11 9 9 I

G 8 9 8 H

s E F G f
*
2(s) x

*
2

B 14 14 15 14 E or F

C 10 12 13 10 E

D 11 11 14 11 E or F

 IJMIE Volume 2, Issue 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

242

March
2012

Now for n=1 i.e.

 F1(s, x1)= Csx1 + f
*
2(x1)

Thus the total minimum cost from A to J is f
*
1(A) = 15.

The possible roots are A C E H J,

 A D E H J,

 A D F I J.

This method will provide a better way to find out all the minimum paths with in a network or any

transportation problem. All the routes to reach the destination can be expressed in very précised

manner.

To implement this we define the algorithm:

Step 1: First store the graph into computer with the help of cost matrix in stage wise.

Step 2: From n
th

 stage to initial one we find the feasible solution.

Step 3: At last print the possible route with the help of last getting feasible solution that represent

also the total minimum cost from starting node to destination node.

Step 4: Stop

Algorithm Analysis:

For first step if we store the data then if layer before stage1 having n1 nodes and after it before

stage2 having node m1 then the complexity in worst case is

O (n1* m1) ≈ O (n1* n1) when m1= n1 or n1> m1 , so O (n1* n1) ≈ O (p
2
) so it becomes O (p

2
).

Similarly for next stages we get O (q
2
), O (r

2
), O (s

2
), O (t

2
) …………. O (z

2
).

So total cost for first step O (n
2
).

s B C D f
*
1(s) x

*
1

A 17 15 15 15 C or D

 IJMIE Volume 2, Issue 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

243

March
2012

For the second step the cost evaluated when we find the feasible solution: once we add and

second when we compare. There are many recursive steps that help to find the solution and

generates the complexity but the whole cost can be represented by a quadratic equation then total

cost for second step suppose O (m
2
).

Similarly for the third steps the cost is also represented by a quadratic equation O (l
2
).

Hence the overall cost for above algorithm may be represented as the sum all the inter- mediated

cost. So the overall running time is given by

Total Estimated Cost = O (n
2
) + O (m

2
) + O (l

2
)

 = O (n
2
) where the n is represented to input vertices of graph.

So the Total Estimated Cost of the problem in worst case is O (n
2
).

Reference:

 Anand Kumar Dixit, M. Jain, A. Srivastava, S. Ghosh “An initiation of Dynamic

Programming to solve the Graphical as well as Network Problems for the minimum path

between node.” published in “OJCST (International Journal ISSN : 0974-6471) Volume 4

No. 1 225-227 June 2011”

 Andreatta, G. and Romero, L., Stochastic shortest paths with recourse, Networks, 18, 193-

204, 1988.

 Daellenbach, H.G. and De Kluyver, C.A., Note on multiple objective dynamic programming,

Journal of the Operational Research Society, 31, 591-594, 1980.

 Denardo, E.V. and Fox, B.L., Shortest-route methods: 1. reaching, pruning, and buckets,

Operations Research, 27, 161-186, 1979a.

 Denardo, E.V. and Fox, B.L., Shortest-route methods: 2. group knapsacks, expanded

networks, and branch- and-bound, Operations Research, 27, 548-566, 1979b.

 Book: Introduction to Algorithms (2009) by Coremen, Leiserson, Rivest, Stein. PHI

 Book: The design and analysis of algorithm by A V Aho.

 Book: Operations Research by Fredric S. Hiller

